3 resultados para Inhalation exposure
em Instituto Nacional de Saúde de Portugal
Resumo:
Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.
Resumo:
Environmental tobacco smoke (ETS) is recognized as an occupational hazard in the hospitality industry. Although Portuguese legislation banned smoking in most indoor public spaces, it is still allowed in some restaurants/bars, representing a potential risk to the workers’ health, particularly for chronic respiratory diseases. The aims of this work were to characterize biomarkers of early genetic effects and to disclose proteomic signatures associated to occupational exposure to ETS and with potential to predict respiratory diseases development. A detailed lifestyle survey and clinical evaluation (including spirometry) were performed in 81 workers from Lisbon restaurants. ETS exposure was assessed through the level of PM 2.5 in indoor air and the urinary level of cotinine. The plasma samples were immunodepleted and analysed by 2D-SDSPAGE followed by in-gel digestion and LC-MS/MS. DNA lesions and chromosome damage were analysed innlymphocytes and in exfoliated buccal cells from 19 cigarette smokers, 29 involuntary smokers, and 33 non-smokers not exposed to tobacco smoke. Also, the DNA repair capacity was evaluated using an ex vivo challenge comet assay with an alkylating agent (EMS). All workers were considered healthy and recorded normal lung function. Interestingly, following 2D-DIGE-MS (MALDI-TOF/TOF), 61 plasma proteins were found differentially expressed in ETS-exposed subjects, including 38 involved in metabolism, acute-phase respiratory inflammation, and immune or vascular functions. On the other hand, the involuntary smokers showed neither an increased level of DNA/chromosome damage on lymphocytes nor an increased number of micronuclei in buccal cells, when compared to non-exposed non-smokers. Noteworthy, lymphocytes challenge with EMS resulted in a significantly lower level of DNA breaks in ETS-exposed as compared to non-exposed workers (P<0.0001) suggestive of an adaptive response elicited by the previous exposure to low levels of ETS. Overall, changes in proteome may be promising early biomarkers of exposure to ETS. Likewise, alterations of the DNA repair competence observed upon ETS exposure deserves to be further understood. Work supported by Fundação Calouste Gulbenkian, ACSS and FCT/Polyannual Funding Program.
Resumo:
This work was focused on a multi-purpose estuarine environment (river Sado estuary, SW Portugal) around which a number of activities (e.g., fishing, farming, heavy industry, tourism and recreational activities) coexist with urban centres with a total of about 200 000 inhabitants. Based on previous knowledge of the hazardous chemicals within the ecosystem and their potential toxicity to benthic species, this project intended to evaluate the impact of estuarine contaminants on the human and ecosystem health. An integrative methodology based on epidemiological, analytical and biological data and comprising several lines of evidence, namely, human contamination pathways, human health effects, consumption of local produce, estuarine sediments, wells and soils contamination, effects on commercial benthic organisms, and genotoxic potential of sediments, was used. The epidemiological survey confirmed the occurrence of direct and indirect (through food chain) exposure of the local population to estuarine contaminants. Furthermore, the complex mixture of contaminants (e.g., metals, pesticides, polycyclic aromatic hydrocarbons) trapped in the estuary sediments was toxic to human liver cells exposed in vitro, causing cell death, oxidative stress and genotoxic effects that might constitute a risk factor for the development of chronic-degenerative diseases, on the long term. Finally, the integration of data from several endpoints indicated that the estuary is moderately impacted by toxicants that affect also the aquatic biota. Nevertheless, the human health risk can only be correctly assessed through a biomonitoring study including the quantification of contaminants (or metabolites) in biological fluids as well as biomarkers of early biological effects (e.g., biochemical, genetic and omics-based endpoints) and genetic susceptibility in the target population. Data should be supported by a detailed survey to assess the impact of the contaminated seafood and local farm products consumption on human health and, particularly, on metabolic diseases or cancer development.