3 resultados para Genetic disease
em Instituto Nacional de Saúde de Portugal
Resumo:
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication/interaction and by unusual repetitive and restricted behaviors and interests. ASD often co-occurs in the same families with other neuropsychiatric diseases (NPD), such as intellectual disability, schizophrenia, epilepsy, depression and attention deficit hyperactivity disorder. Genetic factors have an important role in ASD etiology. Multiple copy number variants (CNVs) and single nucleotide variants (SNVs) in candidate genes have been associated with an increased risk to develop ASD. Nevertheless, recent heritability estimates and the high genotypic and phenotypic heterogeneity characteristic of ASD indicate a role of environmental and epigenetic factors, such as long noncoding RNA (lncRNA) and microRNA (miRNA), as modulators of genetic expression and further clinical presentation. Both miRNA and lncRNA are functional RNA molecules that are transcribed from DNA but not translated into proteins, instead they act as powerful regulators of gene expression. While miRNA are small noncoding RNAs with 22-25 nucleotides in length that act at the post-transcriptional level of gene expression, the lncRNA are bigger molecules (>200 nucleotides in length) that are capped, spliced, and polyadenylated, similar to messenger RNA. Although few lncRNA were well characterized until date, there is a great evidence that they are implicated in several levels of gene expression (transcription/post-transcription/post-translation, organization of protein complexes, cell– cell signaling as well as recombination) as shown in figure 1.
Resumo:
Introdution: Haemochromatosis-type IV, the ferroportin disease, is characterized by an autosomal-dominant transmission and early iron accumulation in macrophages. It is caused by mutations in the transmembrane iron exporter protein ferroportin1 (SLC40A1 gene). In form A (classic), ferroportin loss of function mutants are unable to export iron from cells leading to cellular iron accumulation with decreased availability of iron for serum transferrin (TS). We present a Portuguese rare clinical case of HH-IV. Materials and Methods: A 41-year-old woman with hyperferritinemia and normal TS. Causes of hyperferritinemia (inflammation, chronic alcohol consumption, metabolic syndrome, cell necrosis, non-alcoholic fatty liver disease and aceruloplasminemia) were assessed. Liver iron, evaluated by magnetic resonance imaging (MRI) was carried out. Screening for mutation in HFE and SCL40A1 genes were performed by Sanger sequencing. Baseline: Ferritin:708ng/ml; TS: 27%; MRI:85µmol/g; Hb:13,6g/dl. Therapy: weekly 450ml Therapeutic Phlebotomies (TP) until ferritin≤50ng/ml. Results: Hyperferritinemia comorbidities and common genetic mutations for haemochromatosis were negative. However, sequencing of the patient SLC40A1 gene has revealed the presence in heterozygosity of the variant c.238G>A; p.Gly80Ser. Due to low tolerance to TP, we adopted smaller phlebotomies every three weeks. Conclusion: This patient has a rare autosomal-dominant Ferroportin disease due to a mutated ferroportin which is predicted to be defective in iron cellular export. In agreement, she presents hyperferritinemia, with normal TS and liver iron overload. The genotype/phenotype association allowed to diagnosis this rare FD case. Although a mild form A, we decided to start TP. Her father also has been treated for iron overload.
Resumo:
Sickle cell anemia (SCA) is an autosomal recessive chronic hemolytic anemia, caused by homozygosity for the HBB:c.20A>T mutation. The disease presents with high clinical heterogeneity, stroke being the most devastating manifestation. This study aimed to identify genetic modulators of severe hemolysis and stroke risk in children with SCA, as well as understand their consequences at the hemorheological level. Sixty-six children with SCA were categorised according to their degree of cerebral vasculopathy (Stroke/Risk/Control). Relevant data were collected from patients’ medical records. Several polymorphic regions in genes related to vascular cell adhesion and tonus were characterized by molecular methodologies. Data analyses were performed using R software. Several in silico tools (e.g. TFBind, MatInspector) were applied to investigate the main variant consequences. Some genetic variants in vascular adhesion molecule-1 gene promoter and endothelial nitric oxide synthase gene were associated with higher levels of hemolysis and stroke events. They modify important transcription factor binding sites or disturb the corresponding protein structure/function. Our findings emphasize the relevance of the genetic variants in modulating the degree of hemolysis and development of cerebral vasculopathy due to their effect on gene expression, modification of protein biological activities related with erythrocyte/endothelial interactions and consequent hemorheological abnormalities in SCA.