2 resultados para Gas chromatography-mass spectrometry
em Instituto Nacional de Saúde de Portugal
Resumo:
A multi-residue gas chromatography-mass spectrometry method was developed in order to evaluate the presence of 39 pesticides of different chemical families (organophosphorus, triazines, imidazole, organochlorine), as well as some of their transformation products, in surface water samples from Ria de Aveiro. Ria de Aveiro is an estuarine coastal lagoon, located in the northern west region of Portugal, which receives inputs from agriculture, urban and industrial activities. The analytical method was developed and validated according international guidelines and showed good linearity, with correlation coefficients higher than 0.9949 for all compounds, adequate precision and accuracy, and high sensitivity. Pesticides were chosen from the priority pollutants list of the Directive 2008/105/EC of the European Parliament and of the Council (on environmental quality standards in the field of water policy), or were selected due their common use in agricultural practices. Some of these 39 pesticides are, or are suspected to be, endocrine disruptor compounds (EDCs), being capable of altering the endocrine system of wildlife and humans, causing form malfunction and ultimately health problems. Even those pesticides which are not EDCs, are known to be awfully toxic and have a recognised impact in human health. The aquatic environment is particularly susceptible to pollution due to intentional and accidental release of chemicals to water [3]. Pesticide contamination of surface water is a national issue as it is often used as drinking water. This concern is especially important in rural agricultural areas where population uses small private water supplies, regularly without any laboratory surveillance. The study was performed in seven sampling points and the results showed a considerable concern pesticide contamination of all samples.
Resumo:
Chemical speciation in foodstuffs is of uttermost importance since it is nowadays recognized that both toxicity and bioavailability of an element depend on the chemical form in which the element is present. Regarding arsenic, inorganic species are classified as carcinogenic while organic arsenic, such as arsenobetaine (AsB) or arsenocholine (AsC), is considered less toxic or even non-toxic. Coupling a High Performance Liquid Chromatographer (HPLC) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) combines the power of separation of the first with the selectivity and sensitivity of the second. The present work aims at developing a method, using HPLC-ICP-MS technique, to identify and quantify the chemical species of arsenic present in two food matrices, rice and fish. Two extraction methods, ultrasound and microwave, and different settings were studied. The best method was chosen based on recovery percentages. To ensure that no interconversion of species was occurring, individual spikes of each species of arsenic were made in both matrices and recovery rates were calculated. To guaranty accurate results reference material BCR-627 TUNA FISH, containing certified values for AsB and DMA, was analyzed. Chromatographic separation was achieved using an anion exchange column, HAMILTON-PRP X-100, which allowed to separate the four arsenic species for which standards were available (AsB, dimethylarsenic (DMA), arsenite (AsIII), arsenate (AsV). The mobile phase was chosen based on scientific literature and adjusted to laboratory conditions. Different gradients were studied. As a result we verified that the arsenic species present in both matrices were not the same. While in fish 90% of the arsenic present was in the form of arsenobetaine, in rice 80% of arsenic was present as DMA and 20% as inorganic arsenic.