4 resultados para power transmission
em Instituto Politécnico de Viseu
Resumo:
Power flow calculations are one of the most important tools for power system planning and operation. The need to account for uncertainties when performing power flow studies led, among others methods, to the development of the fuzzy power flow (FPF). This kind of models is especially interesting when a scarcity of information exists, which is a common situation in liberalized power systems (where generation and commercialization of electricity are market activities). In this framework, the symmetric/constrained fuzzy power flow (SFPF/CFPF) was proposed in order to avoid some of the problems of the original FPF model. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this work it is illustrated how the SFPF/CFPF may be used to evaluate the impact on the adequacy of a transmission system originated by specific investments on new network elements
Resumo:
This paper extends the symmetric/constrained fuzzy powerflow models by including the potential correlations between nodal injections. Therefore, the extension of the model allows the specification of fuzzy generation and load values and of potential correlations between nodal injections. The enhanced version of the symmetric/constrained fuzzy powerflow model is applied to the 30-bus IEEE test system. The results prove the importance of the inclusion of data correlations in the analysis of transmission system adequacy.
Resumo:
In restructured power systems, generation and commercialization activities became market activities, while transmission and distribution activities continue as regulated monopolies. As a result, the adequacy of transmission network should be evaluated independent of generation system. After introducing the constrained fuzzy power flow (CFPF) as a suitable tool to quantify the adequacy of transmission network to satisfy 'reasonable demands for the transmission of electricity' (as stated, for instance, at European Directive 2009/72/EC), the aim is now showing how this approach can be used in conjunction with probabilistic criteria in security analysis. In classical security analysis models of power systems are considered the composite system (generation plus transmission). The state of system components is usually modeled with probabilities and loads (and generation) are modeled by crisp numbers, probability distributions or fuzzy numbers. In the case of CFPF the component’s failure of the transmission network have been investigated. In this framework, probabilistic methods are used for failures modeling of the transmission system components and possibility models are used to deal with 'reasonable demands'. The enhanced version of the CFPF model is applied to an illustrative case.
Resumo:
In this paper, the IEEE 14 bus test system is used in order to perform adequacy assessment of a transmission system when large scale integration of electric vehicles is considered at distribution levels. In this framework, the symmetric/constr ained fuzzy power flow (SFPF/CFPF) was proposed. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this framework, electric vehicles of different types will be treated as fuzzy loads configuring part of the “reasonable demands”. With this study, it is also intended to show how to evaluate the amount of EVs that can be safely accommodated to the grid meeting a certain adequacy level.