2 resultados para Literature Research Evaluation
em Instituto Politécnico de Viseu
Resumo:
The uncertainty about the future of firms must be modeled and incorporated in the valuation of enterprises outside the explicit period of analysis, i.e., in the continuing or terminal value (TV). There is a multiplicity of factors that influence the TV of firms which are not being considered within current evaluation models. This aspect leads to the incurring of unrecoverable errors, thus leading to values of goodwill or bad will far away from the substantial value of intrinsic assets. As a consequence, the evaluation results will be presented markedly different from market values. There is no consensus in the scientific community about the method of computation of the TV as a forecast in an infinite horizon. The size of the terminal, or non-explicit period, assumed as infinite, is never called into question by scientific literature, or the probability of business bankruptcy. This paper aims to promote a study of the existing literature on the TV, to highlight the fragility of the evaluation models of companies that have been used by the academic community and by financial analysts, and to point out lines for future research to minimize these errors.
Resumo:
The representation of alkene degradation in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated, using environmental chamber data on the photo-oxidation of ethene, propene, 1-butene and 1-hexene in the presence of NOx, from up to five chambers at the Statewide Air Pollution Research Center (SAPRC) at the University of California. As part of this evaluation, it was necessary to include a representation of the reactions of the alkenes with O(3P), which are significant under chamber conditions but generally insignificant under atmospheric conditions. The simulations for the ethene and propene systems, in particular, were found to be sensitive to the branching ratios assigned to molecular and free radical forming pathways of the O(3P) reactions, with the extent of radical formation required for proper fitting of the model to the chamber data being substantially lower than the reported consensus. With this constraint, the MCM v3 mechanisms for ethene and propene generally performed well. The sensitivity of the simulations to the parameters applied to a series of other radical sources and sink reactions (radical formation from the alkene ozonolysis reactions and product carbonyl photolysis; radical removal from the reaction of OH with NO2 and β-hydroxynitrate formation) were also considered, and the implications of these results are discussed. Evaluation of the MCM v3 1-butene and 1-hexene degradation mechanisms, using a more limited dataset from only one chamber, was found to be inconclusive. The results of sensitivity studies demonstrate that it is impossible to reconcile the simulated and observed formation of ozone in these systems for ranges of parameter values which can currently be justified on the basis of the literature. As a result of this work, gaps and uncertainties in the kinetic, mechanistic and chamber database are identified and discussed, in relation to both tropospheric chemistry and chemistry important under chamber conditions which may compromise the evaluation procedure, and recommendations are made for future experimental studies. Throughout the study, the performance of the MCM v3 chemistry was also simultaneously compared with that of the corresponding chemistry in the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.