2 resultados para ECOLOGICAL IMPACTS
em Instituto Politécnico de Viseu
Resumo:
Dairy cattle farms have a well-known environmental impact that affects all ecological compartments: air, soil, water and biosphere [1]. Dairy cattle farming are a significant source of anthropogenic gases from enteric fermentation, manure storage and land application, mainly ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The emission of such gases represents not only an environmental problem but also leads to energy and nitrogen (N) losses in ruminant production systems [2-5]. Several efforts are required on the development of new technologies and strategies that mitigate gaseous emissions, N losses and improve the efficiency of the energy and N cycles [6, 7]. In the Northwest of Portugal, dairy cattle production has a major impact on the economy, with strong repercussions at national scale. Therefore, our Ph.D. thesis project aims to: a) Study natural supplements as additives in the dairy cattle diet towards a decrease in GHG emissions from feeding operations; b) Compare commercial dairy cattle diets with and without additives on gaseous emissions from manure deposited in a simulated concrete floor; c) Assess the concentrations and emissions of NH3 and greenhouse gases from commercial dairy cattle facilities; d) Evaluate the effects of different additives on lowering gaseous emissions from dairy cattle excreta, using a laboratory system simulating a dairy house concrete floor.
Resumo:
The reuse of treated wastewater could be a promising measure to attenuate the water scarcity burden. In agriculture, irrigation with wastewater may contribute to improve production yields, reduce the ecological footprint and promote socioeconomic benefits. However, it cannot be considered exempt of adverse consequences in environmental and human health. Apart from the introduction of some biological and chemical hazardous agents, the disturbance of the indigenous soil microbial communities and, thus, of vital soil functions impacting soil fertility may occur. The consequences of these disturbances are still poorly understood. This chapter summarises the physicochemical and microbiological alterations in soil resultant from irrigation with treated wastewater that are described in scientific literature. These alterations, which involve a high complexity of variables (soil, wastewater, climate, vegetal cover), may have impacts on soil quality and productivity. In addition, possible health risks may arise, in particular through the direct or indirect contamination of the food chain with micropollutants, pathogens or antibiotic resistance determinants. The current state of the art suggests that irrigation with treated wastewater may have a multitude of long-term implications on soil productivity and public health. Although further research is needed, it seems evident that the analysis of risks associated with irrigation with treated wastewater must take into account not only the quality of water, but other aspects as diverse as soil microbiota, soil type or the cultivated plant species.