2 resultados para Air - Pollution - Manaus (Brazil)
em Instituto Politécnico de Viseu
Resumo:
The isoprene degradation mechanism included in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated and refined, using the Statewide Air Pollution Research Center (SAPRC) environmental chamber datasets on the photo-oxidation of isoprene and its degradation products, methacrolein (MACR) and methylvinyl ketone (MVK). Prior to this, the MCM v3 butane degradation chemistry was also evaluated using chamber data on the photo-oxidation of butane, and its degradation products, methylethyl ketone (MEK), acetaldehyde (CH3CHO) and formaldehyde (HCHO), in conjunction with an initial evaluation of the chamber-dependent auxiliary mechanisms for the series of relevant chambers. The MCM v3 mechanisms for both isoprene and butane generally performed well and were found to provide an acceptable reaction framework for describing the NOx-photo-oxidation experiments on the above systems, although a number of parameter modifications and refinements were identified which resulted in an improved performance. All these relate to the magnitude of sources of free radicals from organic chemical process, such as carbonyl photolysis rates and the yields of radicals from the reactions of O3 with unsaturated oxygenates, and specific recommendations are made for refinements. In addition to this, it was necessary to include a representation of the reactions of O(3P) with isoprene, MACR and MVK (which were not previously treated in MCM v3), and conclusions are drawn concerning the required extent of free radical formation from these reactions. Throughout the study, the performance of MCM v3 was also compared with that of the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.
Resumo:
The representation of alkene degradation in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated, using environmental chamber data on the photo-oxidation of ethene, propene, 1-butene and 1-hexene in the presence of NOx, from up to five chambers at the Statewide Air Pollution Research Center (SAPRC) at the University of California. As part of this evaluation, it was necessary to include a representation of the reactions of the alkenes with O(3P), which are significant under chamber conditions but generally insignificant under atmospheric conditions. The simulations for the ethene and propene systems, in particular, were found to be sensitive to the branching ratios assigned to molecular and free radical forming pathways of the O(3P) reactions, with the extent of radical formation required for proper fitting of the model to the chamber data being substantially lower than the reported consensus. With this constraint, the MCM v3 mechanisms for ethene and propene generally performed well. The sensitivity of the simulations to the parameters applied to a series of other radical sources and sink reactions (radical formation from the alkene ozonolysis reactions and product carbonyl photolysis; radical removal from the reaction of OH with NO2 and β-hydroxynitrate formation) were also considered, and the implications of these results are discussed. Evaluation of the MCM v3 1-butene and 1-hexene degradation mechanisms, using a more limited dataset from only one chamber, was found to be inconclusive. The results of sensitivity studies demonstrate that it is impossible to reconcile the simulated and observed formation of ozone in these systems for ranges of parameter values which can currently be justified on the basis of the literature. As a result of this work, gaps and uncertainties in the kinetic, mechanistic and chamber database are identified and discussed, in relation to both tropospheric chemistry and chemistry important under chamber conditions which may compromise the evaluation procedure, and recommendations are made for future experimental studies. Throughout the study, the performance of the MCM v3 chemistry was also simultaneously compared with that of the corresponding chemistry in the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.