3 resultados para Multi-modality medical images
em Instituto Politécnico de Leiria
Resumo:
Medical imaging technologies are experiencing a growth in terms of usage and image resolution, namely in diagnostics systems that require a large set of images, like CT or MRI. Furthermore, legal restrictions impose that these scans must be archived for several years. These facts led to the increase of storage costs in medical image databases and institutions. Thus, a demand for more efficient compression tools, used for archiving and communication, is arising. Currently, the DICOM standard, that makes recommendations for medical communications and imaging compression, recommends lossless encoders such as JPEG, RLE, JPEG-LS and JPEG2000. However, none of these encoders include inter-slice prediction in their algorithms. This dissertation presents the research work on medical image compression, using the MRP encoder. MRP is one of the most efficient lossless image compression algorithm. Several processing techniques are proposed to adapt the input medical images to the encoder characteristics. Two of these techniques, namely changing the alignment of slices for compression and a pixel-wise difference predictor, increased the compression efficiency of MRP, by up to 27.9%. Inter-slice prediction support was also added to MRP, using uni and bi-directional techniques. Also, the pixel-wise difference predictor was added to the algorithm. Overall, the compression efficiency of MRP was improved by 46.1%. Thus, these techniques allow for compression ratio savings of 57.1%, compared to DICOM encoders, and 33.2%, compared to HEVC RExt Random Access. This makes MRP the most efficient of the encoders under study.
Resumo:
Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC.
Resumo:
Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45 .