2 resultados para Ácido retinóico : Metabolismo

em Instituto Politécnico de Leiria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O chá é a bebida mais consumida no mundo depois da água, no entanto, é no continente Asiático que é mais consumido. Existem vários tipos diferentes de chá “descendentes” da planta Camellia sinensis. É uma bebida multifacetada e benéfica para o próprio consumidor, devido às suas propriedades organoléticas e propriedades benéficas para a saúde (presença de antioxidantes). Hoje em dia existe uma crescente procura por produtos inovadores, de elevada qualidade nutricional, nomeadamente produtos alimentares com propriedades diuréticas ou dietéticas. Por outro lado, os organismos marinhos têm-se revelado como fonte de compostos bioativos com elevado potencial. Nomeadamente as algas que têm demonstrado produzir moléculas, pelo seu metabolismo secundário, com aplicação alimentar, farmacológica, entre outras. Desta forma, o principal objetivo do trabalho foi avaliar a capacidade da alga Fucus Spiralis, uma alga edível com elevado poder antioxidante, na transferência de antioxidantes durante a preparação de uma tisana, para o desenvolvimento de uma bebida inovadora “chá de alga”. Por outro lado, este trabalho teve também como objetivo fazer uma nova tisana “variante” do chá verde alga Fucus Spiralis. De modo a estudar o melhor processo para a secagem da alga, esta foi seca através de três métodos: liofilização, em estufa e no secador Tray-drier. Para os três métodos foram avaliados vários parâmetros químicos, como a quantificação de polifenóis totais, cor, aW e teor de humidade. As análises foram realizadas logo após a secagem. Ao longo do tempo (60 dias), foi também medido a quantificação de polifenóis com a alga embalada a vácuo e sem estar embalada a vácuo. Finalmente, adicionando a alga, o chá verde e aditivos alimentares, procederam-se a três diferentes processos de conservação: esterilização, pasteurização e filtração (filtro 0,22μm). Após estes tratamentos foi realizado um estudo microbiológico, a variação de cor e a quantificação de polifenóis totais ao longo de 30 dias. O menor valor obtido de aW foi observado para a alga liofilizada. Por outro lado os menores valores de humidade foram obtidos pela secagem por liofilização e pela utilização da estufa ventilada. A realização da tisana de Fucus spiralis revelou a libertação de antioxidantes em todos os processos de secagem e para todas as concentrações testadas (0,1g; 0,5g e 1g/300mL). No entanto, a libertação de polifenóis revelou-se apenas dependente do processo de secagem para a concentração de 0,5 g/300 mL, onde a quantificação total de polifenóis foi superior para o processo de liofilização (0,246 ± 0,049 mg equivalentes de ácido gálico/mL). Este valor não apresentou diferenças estatisticamente significativas com os polifenóis quantificados para a concentração de 1g/300mL. O armazenamento da alga Fucus spiralis ao longo de 60 dias em vácuo ou na ausência de vácuo não provocaram alterações na quantificação total de polifenóis e foi independente do processo de secagem. Durante os 60 dias ocorreu uma diminuição dependente do tempo dos polifenóis libertados para a tisana de alga. Esta diminuição foi particularmente acentuada até aos 15 dias. A formulação de uma tisana com 0,5g da alga Fucus spiralis e 0,5g de chá verde revelou-se, tendencialmente, com maior concentração de polifenóis de que uma tisana com 1 g de chá verde ou 1 g. Para a tisana com 0,5g da alga Fucus spiralis e 0,5g de chá verde o processo de esterilização e pasteurização não impediram o crescimento de microrganismo ao final de 30 dias de armazenamento da tisana. Contrariamente, o processo de filtração garantiu ausência de carga bacteriana durante os 30 dias de armazenamento. Por outro lado os níveis de polifenóis diminuíram ligeiramente ao longo do tempo de armazenamento, mas de um modo independente do processo de conservação. Desta forma, as tisanas de alga (Fucus spiralis) e chá verde desenvolvidas no presente trabalho, quando liofilizadas e filtradas, apresentaram um elevado potencial antioxidante, apresentando-se como um produto inovador para a indústria alimentar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As plantas são organismos sésseis, incapazes de se movimentar de modo a procurar melhores condições ambientais ou nutricionais. Desenvolveram, assim mecanismos que lhes permitem adaptar-se e sobreviver em condição de stress. O stress parece ser parcialmente descodificado num sinal de défice de energia que desencadeia uma resposta, que envolve a indução da expressão de genes relacionados com processos catabólicos e a repressão de genes envolvidos em processos anabólicos. As proteínas quinases e fosfatases desempenham um papel fundamental na regulação das vias de sinalização de stress e, em particular as quinases da superfamília das SnRK encontram-se envolvidas em vários processos da resposta a stress, principalmente abióticos. Enquanto as SnRK2 e SnRK3 estão sobretudo envolvidas na resposta a ABA e a stress hídrico e salino, as SnRK1 têm sido descritas como reguladores chave da resposta a défice energético. No entanto, um número crescente de estudos tem evidenciado a interligação entre estas duas vias de sinalização. Apesar da importância de SnRK1 na regulação da resposta ao stress e na regulação do crescimento e desenvolvimento em plantas, os mecanismos moleculares envolvidos são ainda pouco conhecidos. Com o objetivo de identificar proteínas que interagem com SnRK1 e que poderão estar envolvidas na sua via de sinalização, foi efetuado um rastreio, pelo método Y2H, utilizando uma biblioteca comercial normalizada construída a partir de mRNA extraído de onze tecidos de Arabidopsis. Foram identificadas 32 proteínas que potencialmente interagem com SnRK1.1, entre as quais MARD1 e NDF4. O estudo destas interações permitiu verificar que MARD1 medeia a interação entre SnRK1.1 e RAPTOR1B, sugerindo que, de forma semelhante à que ocorre em mamíferos, esta interação pode interligar a resposta ao défice energético envolvendo os complexos SnRK1 e TOR. Curiosamente, verificou-se que MARD1 medeia igualmente a interação entre SnRK1.1 e várias das MAPKs de Arabidopsis, o que poderá indicar que estas duas vias de sinalização estão igualmente interligadas. Foi também verificado que, no sistema de Y2H, SnRK1.1 interage, em alguns casos de forma depende de NDF4, com as proteínas DELLA, componentes essências da via de sinalização de giberelinas, o que pode sugerir uma interligação entre estas duas vias de sinalização e, desta forma, explicar parcialmente o papel de SnRK1 no crescimento e desenvolvimento das plantas. Um novo mecanismo de interligação entre as vias de sinalização de ABA e energia é sugerida pelos resultados obtidos em ensaios de Y2H mostrando que SnRK1.1 interage com SnRK2.3 e, pela observação de que em plantas que não expressam SnRK1.1/2, a expressão de genes de resposta a ABA é fortemente comprometida, sugerindo que SnRK1 poderá ativar as SnRK2 e, deste modo, ativar a resposta a ABA. No seu conjunto, estes dados evidenciam o papel de SnRK1 como regulador central da resposta ao défice energético em plantas e sugerem alguns dos mecanismos moleculares que poderão estar envidos, nomeadamente através da interação com várias outras vias de sinalização como o complexo TOR (interagindo com RAPTOR1B), as MAPKs, a via de sinalização de ABA (através da interação com SnRK2) e a via de sinalização de giberelinas (através da interação com proteínas DELLA).