3 resultados para yeast-to-hypha transition

em Instituto Gulbenkian de Ciência


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of the vertebrate axial skeleton requires coordinated Hox gene activity. Hox group 6 genes are involved in the formation of the thoracic area owing to their unique rib-promoting properties. Here we show that the linker region (LR) connecting the homeodomain and the hexapeptide is essential for Hoxb6 rib-promoting activity in mice. The LR-defective Hoxb6 protein was still able to bind a target enhancer together with Pax3, producing a dominant-negative effect, indicating that the LR brings additional regulatory factors to target DNA elements. We also found an unexpected association between Hoxb6 and segmentation in the paraxial mesoderm. In particular, Hoxb6 can disturb somitogenesis and anterior-posterior somite patterning by dysregulation of Lfng expression. Interestingly, this interaction occurred differently in thoracic versus more caudal embryonic areas, indicating functional differences in somitogenesis before and after the trunk-to-tail transition. Our results suggest the requirement of precisely regulated Hoxb6 expression for proper segmentation at tailbud stages.