2 resultados para relatedness

em Instituto Gulbenkian de Ciência


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human systemic lupus erythematosus (SLE), diverse autoantibodies accumulate over years before disease manifestation. Unaffected relatives of SLE patients frequently share a sustained production of autoantibodies with indiscriminable specificity, usually without ever acquiring the disease. We studied relations of IgG autoantibody profiles and peripheral blood activated regulatory T-cells (aTregs), represented by CD4(+)CD25(bright) T-cells that were regularly 70-90% Foxp3(+). We found consistent positive correlations of broad-range as well as specific SLE-associated IgG with aTreg frequencies within unaffected relatives, but not patients or unrelated controls. Our interpretation: unaffected relatives with shared genetic factors compensated pathogenic effects by aTregs engaged in parallel with the individual autoantibody production. To study this further, we applied a novel analytic approach named coreferentiality that tests the indirect relatedness of parameters in respect to multivariate phenotype data. Results show that independently of their direct correlation, aTreg frequencies and specific SLE-associated IgG were likely functionally related in unaffected relatives: they significantly parallelled each other in their relations to broad-range immunoblot autoantibody profiles. In unaffected relatives, we also found coreferential effects of genetic variation in the loci encoding IL-2 and CD25. A model of CD25 functional genetic effects constructed by coreferentiality maximization suggests that IL-2-CD25 interaction, likely stimulating aTregs in unaffected relatives, had an opposed effect in SLE patients, presumably triggering primarily T-effector cells in this group. Coreferentiality modeling as we do it here could also be useful in other contexts, particularly to explore combined functional genetic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many multifactorial biologic effects, particularly in the context of complex human diseases, are still poorly understood. At the same time, the systematic acquisition of multivariate data has become increasingly easy. The use of such data to analyze and model complex phenotypes, however, remains a challenge. Here, a new analytic approach is described, termed coreferentiality, together with an appropriate statistical test. Coreferentiality is the indirect relation of two variables of functional interest in respect to whether they parallel each other in their respective relatedness to multivariate reference data, which can be informative for a complex effect or phenotype. It is shown that the power of coreferentiality testing is comparable to multiple regression analysis, sufficient even when reference data are informative only to a relatively small extent of 2.5%, and clearly exceeding the power of simple bivariate correlation testing. Thus, coreferentiality testing uses the increased power of multivariate analysis, however, in order to address a more straightforward interpretable bivariate relatedness. Systematic application of this approach could substantially improve the analysis and modeling of complex phenotypes, particularly in the context of human study where addressing functional hypotheses by direct experimentation is often difficult.