1 resultado para regression discrete models
em Instituto Gulbenkian de Ciência
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (31)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (47)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (39)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (26)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (10)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (22)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (19)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (34)
- Queensland University of Technology - ePrints Archive (244)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (88)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (25)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (20)
- University of Connecticut - USA (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (26)
- University of Washington (5)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Many multifactorial biologic effects, particularly in the context of complex human diseases, are still poorly understood. At the same time, the systematic acquisition of multivariate data has become increasingly easy. The use of such data to analyze and model complex phenotypes, however, remains a challenge. Here, a new analytic approach is described, termed coreferentiality, together with an appropriate statistical test. Coreferentiality is the indirect relation of two variables of functional interest in respect to whether they parallel each other in their respective relatedness to multivariate reference data, which can be informative for a complex effect or phenotype. It is shown that the power of coreferentiality testing is comparable to multiple regression analysis, sufficient even when reference data are informative only to a relatively small extent of 2.5%, and clearly exceeding the power of simple bivariate correlation testing. Thus, coreferentiality testing uses the increased power of multivariate analysis, however, in order to address a more straightforward interpretable bivariate relatedness. Systematic application of this approach could substantially improve the analysis and modeling of complex phenotypes, particularly in the context of human study where addressing functional hypotheses by direct experimentation is often difficult.