3 resultados para myogenic regulatory protein
em Instituto Gulbenkian de Ciência
Resumo:
Hox genes are essential for the patterning of the axial skeleton. Hox group 10 has been shown to specify the lumbar domain by setting a rib-inhibiting program in the presomitic mesoderm (PSM). We have now produced mice with ribs in every vertebra by ectopically expressing Hox group 6 in the PSM, indicating that Hox genes are also able to specify the thoracic domain. We show that the information provided by Hox genes to specify rib-containing and rib-less areas is first interpreted in the myotome through the regional-specific control of Myf5 and Myf6 expression. This information is then transmitted to the sclerotome by a system that includes FGF and PDGF signaling to produce vertebrae with or without ribs at different axial levels. Our findings offer a new perspective of how Hox genes produce global patterns in the axial skeleton and support a redundant nonmyogenic role of Myf5 and Myf6 in rib formation.
Resumo:
The tremendous diversity of leaf shapes has caught the attention of naturalists for centuries. In addition to interspecific and intraspecific differences, leaf morphologies may differ in single plants according to age, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the progression from the juvenile to the adult phase is characterized by increased leaf serration. A similar trend is seen in species with more complex leaves, such as the A. thaliana relative Cardamine hirsuta, in which the number of leaflets per leaf increases with age. Although the genetic changes that led to the overall simpler leaf architecture in A. thaliana are increasingly well understood, less is known about the events underlying age-dependent changes within single plants, in either A. thaliana or C. hirsuta. Here, we describe a conserved miRNA transcription factor regulon responsible for an age-dependent increase in leaf complexity. In early leaves, miR319-targeted TCP transcription factors interfere with the function of miR164-dependent and miR164-independent CUC proteins, preventing the formation of serrations in A. thaliana and of leaflets in C. hirsuta. As plants age, accumulation of miR156-regulated SPLs acts as a timing cue that destabilizes TCP-CUC interactions. The destabilization licenses activation of CUC protein complexes and thereby the gradual increase of leaf complexity in the newly formed organs. These findings point to posttranslational interaction between unrelated miRNA-targeted transcription factors as a core feature of these regulatory circuits.
Resumo:
Hox genes encode transcription factors that regulate morphogenesis in all animals with bilateral symmetry. Although Hox genes have been extensively studied, their molecular function is not clear in vertebrates, and only a limited number of genes regulated by Hox transcription factors have been identified. Hoxa2 is required for correct development of the second branchial arch, its major domain of expression. We now show that Meox1 is genetically downstream from Hoxa2 and is a direct target. Meox1 expression is downregulated in the second arch of Hoxa2 mouse mutant embryos. In chromatin immunoprecipitation (ChIP), Hoxa2 binds to the Meox1 proximal promoter. Two highly conserved binding sites contained in this sequence are required for Hoxa2-dependent activation of the Meox1 promoter. Remarkably, in the absence of Meox1 and its close homolog Meox2, the second branchial arch develops abnormally and two of the three skeletal elements patterned by Hoxa2 are malformed. Finally, we show that Meox1 can specifically bind the DNA sequences recognized by Hoxa2 on its functional target genes. These results provide new insight into the Hoxa2 regulatory network that controls branchial arch identity.