3 resultados para conserved epitopes

em Instituto Gulbenkian de Ciência


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.