3 resultados para complexity in spatiotemporal evolution

em Instituto Gulbenkian de Ciência


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tremendous diversity of leaf shapes has caught the attention of naturalists for centuries. In addition to interspecific and intraspecific differences, leaf morphologies may differ in single plants according to age, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the progression from the juvenile to the adult phase is characterized by increased leaf serration. A similar trend is seen in species with more complex leaves, such as the A. thaliana relative Cardamine hirsuta, in which the number of leaflets per leaf increases with age. Although the genetic changes that led to the overall simpler leaf architecture in A. thaliana are increasingly well understood, less is known about the events underlying age-dependent changes within single plants, in either A. thaliana or C. hirsuta. Here, we describe a conserved miRNA transcription factor regulon responsible for an age-dependent increase in leaf complexity. In early leaves, miR319-targeted TCP transcription factors interfere with the function of miR164-dependent and miR164-independent CUC proteins, preventing the formation of serrations in A. thaliana and of leaflets in C. hirsuta. As plants age, accumulation of miR156-regulated SPLs acts as a timing cue that destabilizes TCP-CUC interactions. The destabilization licenses activation of CUC protein complexes and thereby the gradual increase of leaf complexity in the newly formed organs. These findings point to posttranslational interaction between unrelated miRNA-targeted transcription factors as a core feature of these regulatory circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an interspecific cooperative context, individuals must be prepared to tolerate close interactive proximity to other species but also need to be able to respond to relevant social stimuli in the most appropriate manner. The neuropeptides vasopressin and oxytocin and their non-mammalian homologues have been implicated in the evolution of sociality and in the regulation of social behaviour across vertebrates. However, little is known about the underlying physiological mechanisms of interspecific cooperative interactions. In interspecific cleaning mutualisms, interactions functionally resemble most intraspecific social interactions. Here we provide the first empirical evidence that arginine vasotocin (AVT), a non-mammalian homologue of arginine vasopressin (AVP), plays a critical role as moderator of interspecific behaviour in the best studied and ubiquitous marine cleaning mutualism involving the Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus. Exogenous administration of AVT caused a substantial decrease of most interspecific cleaning activities, without similarly affecting the expression of conspecific directed behaviour, which suggests a differential effect of AVT on cleaning behaviour and not a general effect on social behaviour. Furthermore, the AVP-V1a receptor antagonist (manning compound) induced a higher likelihood for cleaners to engage in cleaning interactions and also to increase their levels of dishonesty towards clients. The present findings extend the knowledge of neuropeptide effects on social interactions beyond the study of their influence on conspecific social behaviour. Our evidence demonstrates that AVT pathways might play a pivotal role in the regulation of interspecific cooperative behaviour and conspecific social behaviour among stabilized pairs of cleaner fish. Moreover, our results suggest that the role of AVT as a neurochemical regulator of social behaviour may have been co-opted in the evolution of cooperative behaviour in an interspecific context, a hypothesis that is amenable to further testing on the potential direct central mechanism involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts.