1 resultado para automated thematic analysis of textual data
em Instituto Gulbenkian de Ciência
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (6)
- Aston University Research Archive (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (88)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (66)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (59)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (12)
- Collection Of Biostatistics Research Archive (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (38)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (19)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (8)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- National Center for Biotechnology Information - NCBI (13)
- Nottingham eTheses (1)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (163)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (10)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (4)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (13)
- Université de Lausanne, Switzerland (56)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (5)
- University of Michigan (48)
- University of Queensland eSpace - Australia (56)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
Resumo:
Many multifactorial biologic effects, particularly in the context of complex human diseases, are still poorly understood. At the same time, the systematic acquisition of multivariate data has become increasingly easy. The use of such data to analyze and model complex phenotypes, however, remains a challenge. Here, a new analytic approach is described, termed coreferentiality, together with an appropriate statistical test. Coreferentiality is the indirect relation of two variables of functional interest in respect to whether they parallel each other in their respective relatedness to multivariate reference data, which can be informative for a complex effect or phenotype. It is shown that the power of coreferentiality testing is comparable to multiple regression analysis, sufficient even when reference data are informative only to a relatively small extent of 2.5%, and clearly exceeding the power of simple bivariate correlation testing. Thus, coreferentiality testing uses the increased power of multivariate analysis, however, in order to address a more straightforward interpretable bivariate relatedness. Systematic application of this approach could substantially improve the analysis and modeling of complex phenotypes, particularly in the context of human study where addressing functional hypotheses by direct experimentation is often difficult.