2 resultados para Viral encephalitis
em Instituto Gulbenkian de Ciência
Resumo:
Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.
Resumo:
Influenza A virus is an important human pathogen causative of yearly epidemics and occasional pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral numbers for host-to-host transmission. This process requires multiple rounds of entering permissive cells, replication, and virion assembly at the plasma membrane, the site of viral budding and release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins (vRNPs). The selective assembly of the 8-segment core remains one of the most interesting unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs. Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11, the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling sorting at an unknown step. Here, we speculate on the impact that such impairment might have in host immunity, membrane architecture and viral assembly.