2 resultados para Social brain hypothesis

em Instituto Gulbenkian de Ciência


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group living animals must be able to express different behavior profiles depending on their social status. Therefore, the same genotype may translate into different behavioral phenotypes through socially driven differential gene expression. However, how social information is translated into a neurogenomic response and what are the specific cues in a social interaction that signal a change in social status are questions that have remained unanswered. Here, we show for the first time, to our knowledge, that the switch between status-specific neurogenomic states relies on the assessment of fight outcome rather than just on self- or opponent-only assessment of fighting ability. For this purpose, we manipulated the perception of fight outcome in male zebrafish and measured its impact on the brain transcriptome using a zebrafish whole genome gene chip. Males fought either a real opponent, and a winner and a loser were identified, or their own image on a mirror, in which case, despite expressing aggressive behavior, males did not experience either a victory or a defeat. Massive changes in the brain transcriptome were observed in real opponent fighters, with losers displaying both a higher number of differentially expressed genes and of coexpressed gene modules than winners. In contrast, mirror fighters expressed a neurogenomic state similar to that of noninteracting fish. The genes that responded to fight outcome included immediate early genes and genes involved in neuroplasticity and epigenetic modifications. These results indicate that, even in cognitively simple organisms such as zebrafish, neurogenomic responses underlying changes in social status rely on mutual assessment of fighting ability.