3 resultados para Regulated transcription
em Instituto Gulbenkian de Ciência
Resumo:
Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2) and Achaete-scute homolog 1 (Ascl1), we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1) are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes). This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon.
Resumo:
The tremendous diversity of leaf shapes has caught the attention of naturalists for centuries. In addition to interspecific and intraspecific differences, leaf morphologies may differ in single plants according to age, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the progression from the juvenile to the adult phase is characterized by increased leaf serration. A similar trend is seen in species with more complex leaves, such as the A. thaliana relative Cardamine hirsuta, in which the number of leaflets per leaf increases with age. Although the genetic changes that led to the overall simpler leaf architecture in A. thaliana are increasingly well understood, less is known about the events underlying age-dependent changes within single plants, in either A. thaliana or C. hirsuta. Here, we describe a conserved miRNA transcription factor regulon responsible for an age-dependent increase in leaf complexity. In early leaves, miR319-targeted TCP transcription factors interfere with the function of miR164-dependent and miR164-independent CUC proteins, preventing the formation of serrations in A. thaliana and of leaflets in C. hirsuta. As plants age, accumulation of miR156-regulated SPLs acts as a timing cue that destabilizes TCP-CUC interactions. The destabilization licenses activation of CUC protein complexes and thereby the gradual increase of leaf complexity in the newly formed organs. These findings point to posttranslational interaction between unrelated miRNA-targeted transcription factors as a core feature of these regulatory circuits.
Resumo:
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.