2 resultados para Recombinant Protein

em Instituto Gulbenkian de Ciência


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 10(4) P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei At doses of 10(5) and 10(6) IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6-EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of protein dynamics in living cells is crucial for understanding their biological properties and functions. The SNAP-tag, a self labeling suicide enzyme, presents a tool with unique features that can be adopted for determining protein dynamics in living cells. Here we present detailed protocols for the use of SNAP in fluorescent pulse-chase and quench-chase-pulse experiments. These time-slicing methods provide powerful tools to assay and quantify the fate and turnover rate of proteins of different ages. We cover advantages and pitfalls of SNAP-tagging in fixed- and live-cell studies and evaluate the recently developed fast-acting SNAPf variant. In addition, to facilitate the analysis of protein turnover datasets, we present an automated algorithm for spot recognition and quantification.