4 resultados para Other Cell and Developmental Biology
em Instituto Gulbenkian de Ciência
Resumo:
The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.
Resumo:
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Resumo:
The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects.
Resumo:
Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.