3 resultados para Instituto Federal de Educação, Ciência e Tecnologia do Estado do Pará

em Instituto Gulbenkian de Ciência


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza A virus assembly is an unclear process, whereby individual virion components form an infectious particle. The segmented nature of the influenza A genome imposes a problem to assembly because it requires packaging of eight distinct RNA particles (vRNPs). It also allows genome mixing from distinct parental strains, events associated with influenza pandemic outbreaks. It is important to public health to understand how segmented genomes assemble, a process that is dependent on the transport of components to assembly sites. Previously, it has been shown that vRNPs are carried by recycling endosome vesicles, resulting in a change of Rab11 distribution. Here, we describe that vRNP binding to recycling endosomes impairs recycling endosome function, by competing for Rab11 binding with family-interacting proteins, and that there is a causal relationship between Rab11 ability to recruit family-interacting proteins and Rab11 redistribution. This competition reduces recycling sorting at an unclear step, resulting in clustering of single- and double-membraned vesicles. These morphological changes in Rab11 membranes are indicative of alterations in protein and lipid homeostasis during infection. Vesicular clustering creates hotspots of the vRNPs that need to interact to form an infectious particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A classic T-cell phenotype in systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters T-cell receptor signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multiethnic population. We typed 44 contiguous CD247 single-nucleotide polymorphisms (SNPs) in 8922 SLE patients and 8077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99 × 10(-4) < P < 4.15 × 10(-2)), where we further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-rs858554; G-G-A-G-A; P(hap) = 2.12 × 10(-5)) that exceeded the most associated single SNP rs858554 (minor allele frequency in controls = 13%; P = 4.99 × 10(-4), odds ratio = 1.32) in significance. Imputation and subsequent association analysis showed evidence of association (P < 0.05) at 27 additional SNPs within intron 1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population proportions, showed five SNPs with significant P-values (1.40 × 10(-3) < P< 3.97 × 10(-2)), with one (rs704848) remaining significant after Bonferroni correction (P(meta) = 2.66 × 10(-2)). Our study independently confirms and extends the association of SLE with CD247, which is shared by various autoimmune disorders and supports a common T-cell-mediated mechanism.