2 resultados para Influenza A virus

em Instituto Gulbenkian de Ciência


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza A virus assembly is an unclear process, whereby individual virion components form an infectious particle. The segmented nature of the influenza A genome imposes a problem to assembly because it requires packaging of eight distinct RNA particles (vRNPs). It also allows genome mixing from distinct parental strains, events associated with influenza pandemic outbreaks. It is important to public health to understand how segmented genomes assemble, a process that is dependent on the transport of components to assembly sites. Previously, it has been shown that vRNPs are carried by recycling endosome vesicles, resulting in a change of Rab11 distribution. Here, we describe that vRNP binding to recycling endosomes impairs recycling endosome function, by competing for Rab11 binding with family-interacting proteins, and that there is a causal relationship between Rab11 ability to recruit family-interacting proteins and Rab11 redistribution. This competition reduces recycling sorting at an unclear step, resulting in clustering of single- and double-membraned vesicles. These morphological changes in Rab11 membranes are indicative of alterations in protein and lipid homeostasis during infection. Vesicular clustering creates hotspots of the vRNPs that need to interact to form an infectious particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza A virus is an important human pathogen causative of yearly epidemics and occasional pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral numbers for host-to-host transmission. This process requires multiple rounds of entering permissive cells, replication, and virion assembly at the plasma membrane, the site of viral budding and release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins (vRNPs). The selective assembly of the 8-segment core remains one of the most interesting unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs. Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11, the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling sorting at an unknown step. Here, we speculate on the impact that such impairment might have in host immunity, membrane architecture and viral assembly.