1 resultado para Hemerythrin Model Complex
em Instituto Gulbenkian de Ciência
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (6)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (24)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (46)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (28)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (55)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (47)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (85)
- Central European University - Research Support Scheme (1)
- Chapman University Digital Commons - CA - USA (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (21)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (25)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (6)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (16)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (56)
- Nottingham eTheses (5)
- Open University Netherlands (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (13)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (77)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (16)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (39)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (59)
- Université de Montréal, Canada (8)
- University of Queensland eSpace - Australia (48)
- University of Washington (6)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Many multifactorial biologic effects, particularly in the context of complex human diseases, are still poorly understood. At the same time, the systematic acquisition of multivariate data has become increasingly easy. The use of such data to analyze and model complex phenotypes, however, remains a challenge. Here, a new analytic approach is described, termed coreferentiality, together with an appropriate statistical test. Coreferentiality is the indirect relation of two variables of functional interest in respect to whether they parallel each other in their respective relatedness to multivariate reference data, which can be informative for a complex effect or phenotype. It is shown that the power of coreferentiality testing is comparable to multiple regression analysis, sufficient even when reference data are informative only to a relatively small extent of 2.5%, and clearly exceeding the power of simple bivariate correlation testing. Thus, coreferentiality testing uses the increased power of multivariate analysis, however, in order to address a more straightforward interpretable bivariate relatedness. Systematic application of this approach could substantially improve the analysis and modeling of complex phenotypes, particularly in the context of human study where addressing functional hypotheses by direct experimentation is often difficult.