2 resultados para Factor-like Domain

em Instituto Gulbenkian de Ciência


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eukaryotic cells use two principal mechanisms for repairing DNA double-strand breaks (DSBs): homologous recombination (HR) and nonhomologous end-joining (NHEJ). DSB repair pathway choice is strongly regulated during the cell cycle. Cyclin-dependent kinase 1 (Cdk1) activates HR by phosphorylation of key recombination factors. However, a mechanism for regulating the NHEJ pathway has not been established. Here, we report that Xlf1, a fission yeast XLF ortholog, is a key regulator of NHEJ activity in the cell cycle. We show that Cdk1 phosphorylates residues in the C terminus of Xlf1 over the course of the cell cycle. Mutation of these residues leads to the loss of Cdk1 phosphorylation, resulting in elevated levels of NHEJ repair in vivo. Together, these data establish that Xlf1 phosphorylation by Cdc2(Cdk1) provides a molecular mechanism for downregulation of NHEJ in fission yeast and indicates that XLF is a key regulator of end-joining processes in eukaryotic organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.