2 resultados para Error correction model
em Instituto Gulbenkian de Ciência
Resumo:
Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC), is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1) gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.
Resumo:
Chromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly.