3 resultados para Diffusion mechanisms of strategy

em Instituto Gulbenkian de Ciência


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alachlor has been a commonly applied herbicide and is a substance of ecotoxicological concern. The present study aims to identify molecular biomarkers in the eukaryotic model Saccharomyces cerevisiae that can be used to predict potential cytotoxic effects of alachlor, while providing new mechanistic clues with possible relevance for experimentally less accessible eukaryotes. It focuses on genome-wide expression profiling in a yeast population in response to two exposure scenarios exerting effects from slight to moderate magnitude at phenotypic level. In particular, 100 and 264 genes, respectively, were found as differentially expressed on a 2-h exposure of yeast cells to the lowest observed effect concentration (110 mg/L) and the 20% inhibitory concentration (200 mg/L) of alachlor, in comparison with cells not exposed to the herbicide. The datasets of alachlor-responsive genes showed functional enrichment in diverse metabolic, transmembrane transport, cell defense, and detoxification categories. In general, the modifications in transcript levels of selected candidate biomarkers, assessed by quantitative reverse transcriptase polymerase chain reaction, confirmed the microarray data and varied consistently with the growth inhibitory effects of alachlor. Approximately 16% of the proteins encoded by alachlor-differentially expressed genes were found to share significant homology with proteins from ecologically relevant eukaryotic species. The biological relevance of these results is discussed in relation to new insights into the potential adverse effects of alachlor in health of organisms from ecosystems, particularly in worst-case situations such as accidental spills or careless storage, usage, and disposal.