1 resultado para Correlation based analysis
em Instituto Gulbenkian de Ciência
Filtro por publicador
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archive of European Integration (2)
- Aston University Research Archive (30)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (71)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Brock University, Canada (4)
- CentAUR: Central Archive University of Reading - UK (82)
- Cochin University of Science & Technology (CUSAT), India (19)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (62)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (33)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Castelo Branco - Portugal (2)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (30)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (21)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (46)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (8)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (114)
- Université de Montréal, Canada (13)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (25)
Resumo:
Many multifactorial biologic effects, particularly in the context of complex human diseases, are still poorly understood. At the same time, the systematic acquisition of multivariate data has become increasingly easy. The use of such data to analyze and model complex phenotypes, however, remains a challenge. Here, a new analytic approach is described, termed coreferentiality, together with an appropriate statistical test. Coreferentiality is the indirect relation of two variables of functional interest in respect to whether they parallel each other in their respective relatedness to multivariate reference data, which can be informative for a complex effect or phenotype. It is shown that the power of coreferentiality testing is comparable to multiple regression analysis, sufficient even when reference data are informative only to a relatively small extent of 2.5%, and clearly exceeding the power of simple bivariate correlation testing. Thus, coreferentiality testing uses the increased power of multivariate analysis, however, in order to address a more straightforward interpretable bivariate relatedness. Systematic application of this approach could substantially improve the analysis and modeling of complex phenotypes, particularly in the context of human study where addressing functional hypotheses by direct experimentation is often difficult.