2 resultados para Car body structures

em Instituto Gulbenkian de Ciência


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several decades have passed since the discovery of Hox genes in the fruit fly Drosophila melanogaster. Their unique ability to regulate morphologies along the anteroposterior (AP) axis (Lewis, 1978) earned them well-deserved attention as important regulators of embryonic development. Phenotypes due to loss- and gain-of-function mutations in mouse Hox genes have revealed that the spatio-temporally controlled expression of these genes is critical for the correct morphogenesis of embryonic axial structures. Here, we review recent novel insight into the modalities of Hox protein function in imparting specific identity to anatomical regions of the vertebral column, and in controlling the emergence of these tissues concomitantly with providing them with axial identity. The control of these functions must have been intimately linked to the shaping of the body plan during evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.