Self-assembled core-satellite gold nanoparticle networks for ultrasensitive detection of chiral molecules by recognition tunneling current


Autoria(s): Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier; Zhou, Ruhong; Barrow, Colin J.; He, Jin; Wang, Xin; Yang, Wenrong
Data(s)

01/01/2016

Resumo

Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

Identificador

http://hdl.handle.net/10536/DRO/DU:30083319

Idioma(s)

eng

Publicador

American Chemical Society

Relação

http://dro.deakin.edu.au/eserv/DU:30083319/zhang-selfassembled-2016.pdf

http://dro.deakin.edu.au/eserv/DU:30083319/zhang-selfassembled-inpress-2016.pdf

http://www.dx.doi.org/10.1021/acsnano.6b00216

Direitos

2016, American Chemical Society

Palavras-Chave #biosensors #chiral molecule differentiation #chiral sensing #core satellite GNPs #molecular electronics #tunneling current recognition
Tipo

Journal Article