Shifting Processes with Cyclically Exchangeable Increments at Random


Autoria(s): Chaumont, Loïc; Uribe, Geronimo
Contribuinte(s)

Laboratoire Angevin de REcherche en MAthématiques (LAREMA) ; Centre National de la Recherche Scientifique (CNRS) - Université d'Angers (UA)

Centro de Investigación en Matemáticas (CIMAT) ; Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT)

Data(s)

2015

Resumo

International audience

<p>We propose a path transformation which applied to a cyclically exchangeable increment process conditions its minimum to belong to a given interval.</p><p>This path transformation is then applied to processes with start and end at 0. It is seen that, under simple conditions, the weak limit as ε→0 of the process conditioned on remaining above −ε exists and has the law of the Vervaat transformation of the process.</p><p>We examine the consequences of this path transformation on processes with exchangeable increments, Lévy bridges, and the Brownian bridge.</p>

Identificador

hal-01392197

https://hal.archives-ouvertes.fr/hal-01392197

DOI : 10.1007/978-3-319-13984-5_5

OKINA : ua13782

Idioma(s)

en

Publicador

HAL CCSD

Relação

info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-13984-5_5

Fonte

ISSN: 1050-6977

Progress in Probability

https://hal.archives-ouvertes.fr/hal-01392197

Progress in Probability, 2015, 69, pp.101-117. <10.1007/978-3-319-13984-5_5>

Palavras-Chave #Brownian bridge #Cyclic exchangeability #Occupation time #Path transformation #Three dimensional Bessel bridge #Uniform law #Vervaat transformation #[MATH] Mathematics [math]
Tipo

info:eu-repo/semantics/article

Journal articles