Shifting Processes with Cyclically Exchangeable Increments at Random
Contribuinte(s) |
Laboratoire Angevin de REcherche en MAthématiques (LAREMA) ; Centre National de la Recherche Scientifique (CNRS) - Université d'Angers (UA) Centro de Investigación en Matemáticas (CIMAT) ; Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT) |
---|---|
Data(s) |
2015
|
Resumo |
International audience <p>We propose a path transformation which applied to a cyclically exchangeable increment process conditions its minimum to belong to a given interval.</p><p>This path transformation is then applied to processes with start and end at 0. It is seen that, under simple conditions, the weak limit as ε→0 of the process conditioned on remaining above −ε exists and has the law of the Vervaat transformation of the process.</p><p>We examine the consequences of this path transformation on processes with exchangeable increments, Lévy bridges, and the Brownian bridge.</p> |
Identificador |
hal-01392197 https://hal.archives-ouvertes.fr/hal-01392197 DOI : 10.1007/978-3-319-13984-5_5 OKINA : ua13782 |
Idioma(s) |
en |
Publicador |
HAL CCSD |
Relação |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-13984-5_5 |
Fonte |
ISSN: 1050-6977 Progress in Probability https://hal.archives-ouvertes.fr/hal-01392197 Progress in Probability, 2015, 69, pp.101-117. <10.1007/978-3-319-13984-5_5> |
Palavras-Chave | #Brownian bridge #Cyclic exchangeability #Occupation time #Path transformation #Three dimensional Bessel bridge #Uniform law #Vervaat transformation #[MATH] Mathematics [math] |
Tipo |
info:eu-repo/semantics/article Journal articles |