Generalizations of Poisson Structures Related to Rational Gaudin Model
Contribuinte(s) |
Laboratoire Angevin de REcherche en MAthématiques (LAREMA) ; Centre National de la Recherche Scientifique (CNRS) - Université d'Angers (UA) |
---|---|
Data(s) |
2015
|
Resumo |
International audience <p>The Poisson structure arising in the Hamiltonian approach to the rational Gaudin model looks very similar to the so-called modified Reflection Equation Algebra. Motivated by this analogy, we realize a braiding of the mentioned Poisson structure, i.e. we introduce a ”braided Poisson” algebra associated with an involutive solution to the quantum Yang-Baxter equation. Also, we exhibit another generalization of the Gaudin type Poisson structure by replacing the first derivative in the current parameter, entering the so-called local form of this structure, by a higher order derivative. Finally, we introduce a structure, which combines both generalizations. Some commutative families in the corresponding braided Poisson algebra are found.</p> |
Identificador |
hal-01392198 https://hal.archives-ouvertes.fr/hal-01392198 DOI : 10.1007/s00023-014-0350-4 OKINA : ua13632 |
Idioma(s) |
en |
Publicador |
HAL CCSD Springer Verlag |
Relação |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-014-0350-4 |
Fonte |
ISSN: 1424-0637 EISSN: 1424-0661 Annales Henri Poincaré https://hal.archives-ouvertes.fr/hal-01392198 Annales Henri Poincaré, Springer Verlag, 2015, 16 (7), pp.1689-1707. <10.1007/s00023-014-0350-4> |
Palavras-Chave | #(modified) reflection equation algebra #braiding #Gaudin model #Hecke symmetry #involutive #Poisson structure #symmetry #[MATH] Mathematics [math] |
Tipo |
info:eu-repo/semantics/article Journal articles |