Generalizations of Poisson Structures Related to Rational Gaudin Model


Autoria(s): Gurevich, Dimitri; Roubtsov, Vladimir; Saponov, Pavel; Škoda, Zoran
Contribuinte(s)

Laboratoire Angevin de REcherche en MAthématiques (LAREMA) ; Centre National de la Recherche Scientifique (CNRS) - Université d'Angers (UA)

Data(s)

2015

Resumo

International audience

<p>The Poisson structure arising in the Hamiltonian approach to the rational Gaudin model looks very similar to the so-called modified Reflection Equation Algebra.  Motivated by this analogy, we realize a braiding of the mentioned Poisson structure, i.e. we introduce a ”braided Poisson” algebra associated with an involutive solution to the quantum Yang-Baxter equation. Also, we exhibit another generalization of the Gaudin type Poisson structure by replacing the first derivative in the current parameter, entering the so-called local form of this structure, by a higher order derivative.  Finally, we introduce a structure, which combines both generalizations.  Some commutative families in the corresponding braided Poisson algebra are found.</p>

Identificador

hal-01392198

https://hal.archives-ouvertes.fr/hal-01392198

DOI : 10.1007/s00023-014-0350-4

OKINA : ua13632

Idioma(s)

en

Publicador

HAL CCSD

Springer Verlag

Relação

info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-014-0350-4

Fonte

ISSN: 1424-0637

EISSN: 1424-0661

Annales Henri Poincaré

https://hal.archives-ouvertes.fr/hal-01392198

Annales Henri Poincaré, Springer Verlag, 2015, 16 (7), pp.1689-1707. <10.1007/s00023-014-0350-4>

Palavras-Chave #(modified) reflection equation algebra #braiding #Gaudin model #Hecke symmetry #involutive #Poisson structure #symmetry #[MATH] Mathematics [math]
Tipo

info:eu-repo/semantics/article

Journal articles