A 3D printed electromagnetic nonlinear vibration energy harvester


Autoria(s): Constantinou, Peter; Roy, Saibal
Data(s)

28/10/2016

28/10/2016

24/08/2016

Resumo

A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ~25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system's corresponding power density of ~0.48 mW cm−3 and normalised power integral density of 11.9 kg m−3 (at 1 g) are comparable to other in-plane systems found in the literature.

Formato

application/pdf

Identificador

CONSTANTINOU, P. and ROY, S. (2016) ‘A 3D printed electromagnetic nonlinear vibration energy harvester’, Smart Materials and Structures, 25(9), 095053 (14pp). doi:10.1088/0964-1726/25/9/095053

25

9

1

14

0964-1726

http://hdl.handle.net/10468/3225

10.1088/0964-1726/25/9/095053

Smart Materials and Structures

095053

Idioma(s)

en

Publicador

IOP Publishing Ltd

Direitos

© 2016, IOP Publishing Ltd. This is an author-created, un-copyedited version of an article accepted for publication in Smart Materials and Structures. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://stacks.iop.org/0964-1726/25/i=9/a=095053

Palavras-Chave #Vibration energy harvesting #Nonlinear #3D printing #Electromagnetic #Leaf isosceles trapezoidal flexural pivot
Tipo

Article (peer-reviewed)