Asymmetric polygons with maximum area
Data(s) |
01/02/2016
|
---|---|
Resumo |
We say that a polygon inscribed in the circle is asymmetric if it contains no two antipodal points being the endpoints of a diameter. Given n diameters of a circle and a positive integer k < n, this paper addresses the problem of computing a maximum area asymmetric k-gon having as vertices k < n endpoints of the given diameters. The study of this type of polygons is motivated by ethnomusiciological applications. SCOPUS: ar.j info:eu-repo/semantics/published |
Formato |
1 full-text file(s): application/pdf |
Identificador |
uri/info:doi/10.1016/j.ejor.2015.08.013 uri/info:pii/S0377221715007304 https://dipot.ulb.ac.be/dspace/bitstream/2013/230376/1/Elsevier_214003.pdf http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/230376 |
Idioma(s) |
en |
Direitos |
1 full-text file(s): info:eu-repo/semantics/restrictedAccess |
Fonte |
European journal of operational research, 248 (3 |
Palavras-Chave | #Recherche opérationnelle #Informatique de gestion #Théorie de la décision et des choix collectifs #Informatique mathématique #Algorithms #Combinatorial optimization #Computational music theory #Global optimization #Musical rhythms |
Tipo |
info:eu-repo/semantics/article info:ulb-repo/semantics/articlePeerReview info:ulb-repo/semantics/openurl/article |