Splitting monoidal stable model categories


Autoria(s): Barnes, D.
Data(s)

01/05/2009

Resumo

If C is a stable model category with a monoidal product then the set of homotopy classes of self-maps of the unit forms a commutative ring, [S,S]C. An idempotent e of this ring will split the homotopy category: [X,Y]C≅e[X,Y]C⊕(1−e)[X,Y]C. We prove that provided the localised model structures exist, this splitting of the homotopy category comes from a splitting of the model category, that is, C is Quillen equivalent to LeSC×L(1−e)SC and [X,Y]LeSC≅e[X,Y]C. This Quillen equivalence is strong monoidal and is symmetric when the monoidal product of C is.

Identificador

http://pure.qub.ac.uk/portal/en/publications/splitting-monoidal-stable-model-categories(a075b3de-720b-4f65-893b-50db8ad13944).html

http://dx.doi.org/10.1016/j.jpaa.2008.10.004

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Barnes , D 2009 , ' Splitting monoidal stable model categories ' Journal of Pure and Applied Algebra , vol 213 , no. 5 , pp. 846-856 . DOI: 10.1016/j.jpaa.2008.10.004

Tipo

article