Selective Preparation of Semiconducting Single-Walled Carbon Nanotubes: From Fundamentals to Applications


Autoria(s): LI, JINGHUA
Contribuinte(s)

Liu, Jie

Data(s)

2016

Resumo

<p>Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, there are considerable challenges in the preparation of semiconducting (s-) SWNTs with controlled properties (e.g., density, selectivity, and diameter) for their application in solving real-world problems. This dissertation describes research that aims to overcome the limitations by novel synthesis strategies and post-growth treatment. The application of as-prepared SWNTs as functional devices is also demonstrated. The dissertation includes the following parts: 1) decoupling the conflict between density and selectivity of s-SWNTs in CVD growth; 2) investigating the importance of diameter control for the selective synthesis of s-SWNTs; 3) synthesizing highly conductive SWNT thin film by thiophene-assisted CVD method; 4) eliminating metallic pathways in SWNT crossbars by gate-free electrical breakdown method; 5) enhancing the density of SWNT arrays by strain-release method; 6) studying the sensing mechanism of SWNT crossbar chemical sensors.</p>

Dissertation

Identificador

http://hdl.handle.net/10161/12181

Palavras-Chave #Chemistry
Tipo

Dissertation