Optimización de la factorización de matrices no negativas en Bioinformática


Autoria(s): Mejía Roa, Edgardo
Contribuinte(s)

Pascual Montano, Alberto

Tirado Fernández, Francisco

Data(s)

02/02/2016

Resumo

En los últimos años se ha incrementado el interés de la comunidad científica en la Factorización de matrices no negativas (Non-negative Matrix Factorization, NMF). Este método permite transformar un conjunto de datos de grandes dimensiones en una pequeña colección de elementos que poseen semántica propia en el contexto del análisis. En el caso de Bioinformática, NMF suele emplearse como base de algunos métodos de agrupamiento de datos, que emplean un modelo estadístico para determinar el número de clases más favorable. Este modelo requiere de una gran cantidad de ejecuciones de NMF con distintos parámetros de entrada, lo que representa una enorme carga de trabajo a nivel computacional. La mayoría de las implementaciones de NMF han ido quedando obsoletas ante el constante crecimiento de los datos que la comunidad científica busca analizar, bien sea porque los tiempos de cómputo llegan a alargarse hasta convertirse en inviables, o porque el tamaño de esos datos desborda los recursos del sistema. Por ello, esta tesis doctoral se centra en la optimización y paralelización de la factorización NMF, pero no solo a nivel teórico, sino con el objetivo de proporcionarle a la comunidad científica una nueva herramienta para el análisis de datos de origen biológico. NMF expone un alto grado de paralelismo a nivel de datos, de granularidad variable; mientras que los métodos de agrupamiento mencionados anteriormente presentan un paralelismo a nivel de cómputo, ya que las diversas instancias de NMF que se ejecutan son independientes. Por tanto, desde un punto de vista global, se plantea un modelo de optimización por capas donde se emplean diferentes tecnologías de alto rendimiento...

Formato

application/pdf

Identificador

http://eprints.ucm.es/38990/1/T37724.pdf

Idioma(s)

es

Publicador

Universidad Complutense de Madrid

Relação

http://eprints.ucm.es/38990/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Bioinformática
Tipo

info:eu-repo/semantics/doctoralThesis

PeerReviewed