Seawater carbonate chemistry and processes during experiments with Emiliania huxleyi, 2008


Autoria(s): Iglesias-Rodriguez, Debora; Halloran, PR; Rickaby, Rosalind EM; Hall, Ian R; Colmenero-Hidalgo, Elena; Gittins, JR; Green, Darryl RH; Tyrrell, Toby; Gibbs, Samantha J; von Dassow, P; Rehm, E; Armbrust, E Virginia; Boessenkool, KP
Data(s)

12/06/2008

Resumo

Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.

Formato

text/tab-separated-values, 1237 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.718841

doi:10.1594/PANGAEA.718841

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Iglesias-Rodriguez, Debora; Halloran, PR; Rickaby, Rosalind EM; Hall, Ian R; Colmenero-Hidalgo, Elena; Gittins, JR; Green, Darryl RH; Tyrrell, Toby; Gibbs, Samantha J; von Dassow, P; Rehm, E; Armbrust, E Virginia; Boessenkool, KP (2008): Phytoplankton calcification in a high-CO2 world. Science, 320(5874), 336-340, doi:10.1126/science.1154122

Palavras-Chave #Alkalinity, total; Aragonite saturation state; Bicarbonate ion; biogeochemistry; calcification; Calcification rate of calcium carbonate per algae cell; Calcite saturation state; Calcium carbonate in cell; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; chemistry; Counting; Element analyser, Thermo Finnigan flash EA 1112; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; field; Flow cytometry; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); growth; Growth rate; laboratory; morphology; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon content per cell; pH; phytoplankton; primary production; Production of particulate organic carbon per cell; Salinity; Temperature, water; Titration, VINDTA system
Tipo

Dataset