Local convergence of quasi-Newton methods under metric regularity
Contribuinte(s) |
Universidad de Alicante. Departamento de Estadística e Investigación Operativa Laboratorio de Optimización (LOPT) |
---|---|
Data(s) |
06/03/2014
06/03/2014
30/10/2013
|
Resumo |
We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis–Moré condition for q-superlinear convergence. Simple numerical examples illustrate the results. A. Belyakov was supported by the Austrian Science Foundation (FWF) under grant No P 24125-N13. A.L. Dontchev was supported by NSF Grant DMS 1008341 through the University of Michigan. M. López was supported by MINECO of Spain, Grant MTM2011-29064-C03-02. |
Identificador |
Computational Optimization and Applications. 2013, October. doi:10.1007/s10589-013-9615-y 0926-6003 (Print) 1573-2894 (Online) http://hdl.handle.net/10045/35901 10.1007/s10589-013-9615-y |
Idioma(s) |
eng |
Publicador |
Springer Science+Business Media New York |
Relação |
http://dx.doi.org/10.1007/s10589-013-9615-y |
Direitos |
The original publication is available at www.springerlink.com info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Generalized equation #Quasi-Newton method #Broyden update #Strong metric subregularity #Metric regularity #Strong metric regularity #q-Superlinear convergence #Estadística e Investigación Operativa |
Tipo |
info:eu-repo/semantics/article |