Local convergence of quasi-Newton methods under metric regularity


Autoria(s): Aragón Artacho, Francisco Javier; Belyakov, Anton O.; Dontchev, Asen L.; López Cerdá, Marco A.
Contribuinte(s)

Universidad de Alicante. Departamento de Estadística e Investigación Operativa

Laboratorio de Optimización (LOPT)

Data(s)

06/03/2014

06/03/2014

30/10/2013

Resumo

We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis–Moré condition for q-superlinear convergence. Simple numerical examples illustrate the results.

A. Belyakov was supported by the Austrian Science Foundation (FWF) under grant No P 24125-N13. A.L. Dontchev was supported by NSF Grant DMS 1008341 through the University of Michigan. M. López was supported by MINECO of Spain, Grant MTM2011-29064-C03-02.

Identificador

Computational Optimization and Applications. 2013, October. doi:10.1007/s10589-013-9615-y

0926-6003 (Print)

1573-2894 (Online)

http://hdl.handle.net/10045/35901

10.1007/s10589-013-9615-y

Idioma(s)

eng

Publicador

Springer Science+Business Media New York

Relação

http://dx.doi.org/10.1007/s10589-013-9615-y

Direitos

The original publication is available at www.springerlink.com

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Generalized equation #Quasi-Newton method #Broyden update #Strong metric subregularity #Metric regularity #Strong metric regularity #q-Superlinear convergence #Estadística e Investigación Operativa
Tipo

info:eu-repo/semantics/article