Quasi-isometries and isoperimetric inequalities


Autoria(s): Canton Pire, Alicia; Granados Sanandrés, Ana; Portilla Ferreira, Ana; Rodríguez García, José Manuel
Data(s)

2013

Resumo

We consider the stability of isoperimetric inequalities under quasi-isometries between Riemann surfaces. Kanai observed that quasi-isometries preserve isoperimetric inequalities on complete Riemannian manifolds with finite geometry: positive injectivity radius and Ricci curvature bounded from below (see [2]). In [1], it is shown that the linear isoperimetric inequality is a quasi-isometric invariant for planar Riemann surfaces (genus zero surfaces) with vanishing injectivity radius. Moreover, it is proved that non-linear isoperimetric inequalities can only hold for Riemann surfaces with positive injectivity radius, and hence, by Kanai's observation, preserved by quasi-isometries. In this talk we present an overview on isoperimetric inequalities and give some of the ideas of the proofs of the results cited above.

Formato

application/pdf

Identificador

http://oa.upm.es/33312/

Idioma(s)

eng

Publicador

E.T.S.I. Navales (UPM)

Relação

http://oa.upm.es/33312/1/INVE_MEM_2013_180203.pdf

info:eu-repo/semantics/altIdentifier/doi/null

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Resúmenes XIV Encuentro de Análisis Real y Complejo (EARCO 2013) | XIV Encuentro de Análisis Real y Complejo (EARCO 2013) | 16/05/2013 - 18/05/2013 | Teruel, España

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed