Improving shortest paths in the Delaunay triangulation


Autoria(s): Hernández Peñalver, Gregorio; Abellanas Oar, Manuel; Claverol, Merce; Hurtado Díaz, Fernando Alfredo; Sacristán Adinolfi, Vera; Saumell Mendiola, Maria; Silveira, Rodrigo Ignacio
Data(s)

2012

Resumo

We study a problem about shortest paths in Delaunay triangulations. Given two nodes s; t in the Delaunay triangulation of a point set P, we look for a new point p that can be added, such that the shortest path from s to t in the Delaunay triangulation of P u{p} improves as much as possible. We study properties of the problem and give efficient algorithms to find such a point when the graph-distance used is Euclidean and for the link-distance. Several other variations of the problem are also discussed.

Formato

application/pdf

Identificador

http://oa.upm.es/19280/

Idioma(s)

eng

Publicador

Facultad de Informática (UPM)

Relação

http://oa.upm.es/19280/1/INVE_MEM_2011_121582.pdf

http://hdl.handle.net/2117/16981

info:eu-repo/semantics/altIdentifier/doi/null

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

International journal of computational geometry and applications | XIV Spanish Meeting on Computacional Geometry | 27/06/2011 - 30/06/2011 | Alcalá de Henares, Madrid

Palavras-Chave #Informática
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed