Connecting red cells in a bichromatic Voronoi diagram
Data(s) |
2012
|
---|---|
Resumo |
Let S be a set of n + m sites, of which n are red and have weight wR, and m are blue and weigh wB. The objective of this paper is to calculate the minimum value of wR such that the union of the red Voronoi cells in the weighted Voronoi diagram of S is a connected set. The problem is solved for the multiplicatively-weighted Voronoi diagram in O((n+m)^2 log(nm)) time and for the additively-weighted Voronoi diagram in O(nmlog(nm)) time. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
Facultad de Informática (UPM) |
Relação |
http://oa.upm.es/19279/1/INVE_MEM_2011_121577.pdf http://link.springer.com/chapter/10.1007%2F978-3-642-34191-5_20 info:eu-repo/semantics/altIdentifier/doi/null |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
Computational Geometry | XIV Spanish Meeting on Computacional Geometry | 27/06/2011 - 30/06/2011 | Alcalá de Henares, Madrid |
Palavras-Chave | #Informática |
Tipo |
info:eu-repo/semantics/conferenceObject Ponencia en Congreso o Jornada PeerReviewed |