Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels


Autoria(s): Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan
Cobertura

LATITUDE: 24.520000 * LONGITUDE: 117.180000 * DATE/TIME START: 2013-06-15T00:00:00 * DATE/TIME END: 2013-06-15T00:00:00

Data(s)

10/05/2016

Resumo

Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

Formato

text/tab-separated-values, 1434 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.860293

doi:10.1594/PANGAEA.860293

Idioma(s)

en

Publicador

PANGAEA

Relação

Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan (2015): Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714, doi:10.1038/ncomms9714

Palavras-Chave #Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phenolics, all; Phenolics, all, per individual; Potentiometric; Registration number of species; Replicate; Respiration rate, oxygen, per cell; Salinity; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Wuyuan_Bay
Tipo

Dataset