Rotational integral geometry of tensor valuations
Data(s) |
01/03/2013
|
---|---|
Resumo |
We derive a new rotational Crofton formula for Minkowski tensors. In special cases, this formula gives (1) the rotational average of Minkowski tensors defined on linear subspaces and (2) the functional defined on linear subspaces with rotational average equal to a Minkowski tensor. Earlier results obtained for intrinsic volumes appear now as special cases. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/41305/1/Rotational%20integral.pdf Auneau-Cognacq, Jeremy; Fasciati-Ziegel, Johanna; Jensen, Eva B. Vedel (2013). Rotational integral geometry of tensor valuations. Advances in Applied Mathematics, 50(3), pp. 429-444. Elsevier 10.1016/j.aam.2012.10.006 <http://dx.doi.org/10.1016/j.aam.2012.10.006> doi:10.7892/boris.41305 info:doi:10.1016/j.aam.2012.10.006 urn:issn:0196-8858 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://boris.unibe.ch/41305/ http://www.sciencedirect.com/science/article/pii/S0196885812001108# |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Auneau-Cognacq, Jeremy; Fasciati-Ziegel, Johanna; Jensen, Eva B. Vedel (2013). Rotational integral geometry of tensor valuations. Advances in Applied Mathematics, 50(3), pp. 429-444. Elsevier 10.1016/j.aam.2012.10.006 <http://dx.doi.org/10.1016/j.aam.2012.10.006> |
Palavras-Chave | #360 Social problems & social services #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |