Herbrand Theorems for Substructural Logics


Autoria(s): Cintula, Petr; Metcalfe, George
Data(s)

2013

Resumo

Herbrand and Skolemization theorems are obtained for a broad family of first-order substructural logics. These logics typically lack equivalent prenex forms, a deduction theorem, and reductions of semantic consequence to satisfiability. The Herbrand and Skolemization theorems therefore take various forms, applying either to the left or right of the consequence relation, and to restricted classes of formulas.

Formato

application/pdf

Identificador

http://boris.unibe.ch/41261/1/report13-11%281%29.pdf

Cintula, Petr; Metcalfe, George (2013). Herbrand Theorems for Substructural Logics. In: LPAR 2013. Lecture Notes in Computer Science: Vol. 8312 (pp. 584-600). Springer 10.1007/978-3-642-45221-5_39 <http://dx.doi.org/10.1007/978-3-642-45221-5_39>

doi:10.7892/boris.41261

info:doi:10.1007/978-3-642-45221-5_39

urn:isbn:978-3-642-45220-8

Idioma(s)

eng

Publicador

Springer

Relação

http://boris.unibe.ch/41261/

http://link.springer.com/chapter/10.1007%2F978-3-642-45221-5_39

Direitos

info:eu-repo/semantics/openAccess

Fonte

Cintula, Petr; Metcalfe, George (2013). Herbrand Theorems for Substructural Logics. In: LPAR 2013. Lecture Notes in Computer Science: Vol. 8312 (pp. 584-600). Springer 10.1007/978-3-642-45221-5_39 <http://dx.doi.org/10.1007/978-3-642-45221-5_39>

Palavras-Chave #510 Mathematics #000 Computer science, knowledge & systems
Tipo

info:eu-repo/semantics/conferenceObject

info:eu-repo/semantics/publishedVersion

PeerReviewed