Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind


Autoria(s): Albrecht, Joachim
Data(s)

2005

Resumo

Es wird die Existenz invarianter Tori in Hamiltonschen Systemen bewiesen, die bis auf eine 2n-mal stetig differenzierbare Störung analytisch und integrabel sind, wobei n die Anzahl der Freiheitsgrade bezeichnet. Dabei wird vorausgesetzt, dass die Stetigkeitsmodule der 2n-ten partiellen Ableitungen der Störung einer Endlichkeitsbedingung (Integralbedingung) genügen, welche die Hölderbedingung verallgemeinert. Bisher konnte die Existenz invarianter Tori nur unter der Voraussetzung bewiesen werden, dass die 2n-ten Ableitungen der Störung hölderstetig sind.

We prove the existence of invariant tori in Hamiltonian Systems, which are analytic and integrable except a 2n-times continuously differentiable perturbation (n denotes the number of the degrees of freedom). It is assumed that the moduli of continuity of the 2n-th partial derivatives of the perturbation satisfy a condition of finiteness (condition on an integral), which is more general than a Hölder condition. So far the existence of invariant tori could be proven only under the condition that the 2n-th partial derivatives of the perturbation are Hölder continuous.

Formato

application/pdf

Identificador

urn:nbn:de:hebis:77-8308

http://ubm.opus.hbz-nrw.de/volltexte/2005/830/

Idioma(s)

ger

Publicador

08: Physik, Mathematik und Informatik. 08: Physik, Mathematik und Informatik

Direitos

http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php

Palavras-Chave #KAM-Theorie #KAM-Theory #Mathematics
Tipo

Thesis.Doctoral