Vergleichende Sequenzierung und Analyse eines ca. 250 kb großen Bereiches der humanen Chromosomenregion 11p15.3 und der homologen Region der Maus
Data(s) |
2001
|
---|---|
Resumo |
In der vorliegenden Dissertation wurde im Rahmen des Deutschen Humangenomprojektes ein 243 966 bp grosser genomischer Bereich um das humane Gen WEE1 in der Chromsomenregion 11p15.3 und der 192 519 bp lange orthologe Bereich auf dem murinen Chromosom 7 anhand von PAC-Klonen sequenziert. Der Sequenzierung ging die Erstellung von PAC-Klon-Contigs voraus, welche die zu untersuchenden genomischen Regionen in Mensch und Maus lückenlos abdecken. Nach der Etablierung von Hochdurchsatzmethoden zur Probenherstellung und verarbeitung wurden die Konsensussequenzen in Mensch und Maus ermittelt. Zur Identifizierung aller Gene wurde die Sequenz einer Kombination von Datenbanksuchen, computergestützten Exonvorhersageprogrammen und der komparativen Sequenzanalyse mit Hilfe von Dotplot- und PIP-Darstellungen unterzogen. In den untersuchten genomischen Regionen der beiden Spezies konnten insgesamt drei orthologe Genpaare (WEE1, ZNF143 und RanBP7) und ein humanes Pseudogen (Pseudogen L23a) lokalisiert werden.Das am Zellzyklus beteiligte WEE1-Gen, das auch als Ausgangspunkt für die Isolierung der PAC-Klone zur Erstellung der genomischen Contigs diente, ist sowohl in der humanen als auch in der murinen Sequenz vollständig enthalten. Hierbei konnte die publizierte mRNA-Sequenz des murinen Wee1-Gens, unterstützt von EST-Daten, korrigiert werden. Sowohl das ZNF143-Gen als auch sein murines Orthologes, mStaf, sind in den genomischen Sequenzen vollständig enthalten. Somit muss die in 11p15.4 publizierte Lokalisation des ZNF143-Gens in die Region 11p15.3 berichtigt werden. Weiterhin wurde die cDNA-Sequenz des humanen ZNF143-Gens um ein bisher noch nicht beschriebenes Exon im 5´-Bereich und die des murinen mStaf-Gens um knapp 170 bp im 3´-Bereich verlängert. Der in der ZNF143-mRNA-Sequenz publizierte 3´-UTR konnte in der vorliegenden genomischen Sequenz nicht lokalisiert werden. Es scheint sich hierbei um ein von Chromosom 14 stammendes Klonierungsartefakt zu handeln. Das im Menschen beschriebene RanBP7-Gen wurde mit Ausnahme des Exons 1 vollständig in der untersuchten genomischen Sequenz lokalisiert. Über Datenbank-Suchen konnte ein EST-Klon identifiziert werden, der die bisher bekannte RanBP7-mRNA um knapp 2,4 kb in den 3´-Bereich hinein verlängert. Eine Bestätigung der Transkriptlänge erfolgte über Northern Blot-Analyse. Das bisher unbekannte murine Orthologe, mRanBP7, konnte aufgrund komparativer Sequenzanalyse und Datenbanksuchen in der vorliegenden genomischen Maus-Sequenz ermittelt werden, wobei die Sequenz über RT-PCR-Experimente generiert und die Transkriptlänge durch Northern Blot-Analyse bestätigt werden konnte. Neben den drei bekannten Genen konnte in der humanen Sequenz darüber hinaus ein Pseudogen (Pseudogen L23a) identifiziert werden, welches über einen Bereich von 549 bp eine 92%-ige Sequenzidentität zu dem humanen ribosomalen Protein L23a aufweist und die typischen, 13 bp langen direkten Sequenzwiederholungen besitzt. Acht der insgesamt 10 Nukleotidaustausche führen im Vergleich zu L23a zu einem Aminosäureaustausch, wodurch u. a. ein vorzeitiger Translations-Stop bedingt ist. Die komparative Sequenzanalyse deckte neben den konservierten Gen-Bereichen zwischen Mensch und Maus insgesamt vier konservierte Bereiche auf. Bei der Analyse dieser Regionen mit Hilfe von EST-Daten bzw. Exonvorhersageprogrammen konnte jedoch keiner dieser vier konservierten Regionen eine eindeutige kodierende Funktion nachgewiesen werden. Es könnte sich hierbei somit um funktionell bedeutsame regulatorische Regionen handeln. Die Analysen der ermittelten genomischen Sequenzen zeigten, dass der Anteil an repetitiven Elementen mit 55,26% in der untersuchten humanengenomischen Region gegenüber der murinen Sequenz (41,87%) deutlich erhöht ist. Durch die vergleichende Sequenzanalyse können Artefakte in den EST-analysiert und somit die Zuverlässigkeit der verwendeten Exonvorhersage-Programme optimiert werden.Die Ergebnisse der vorliegenden Arbeit zeigen, dass die Kombination von komparativer Sequenzanalyse, Datenbank-Suchen und Exonvorhersageprogrammen die Sicherheit bei der Identifikation von kodierenden Sequenzen stark verbessert. |
Formato |
application/pdf |
Identificador |
urn:nbn:de:hebis:77-2484 |
Idioma(s) |
ger |
Publicador |
Universität Mainz 10: Biologie. 10: Biologie |
Direitos |
http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php |
Palavras-Chave | #Life sciences |
Tipo |
Thesis.Doctoral |