Functional clustering of time series gene expression data by Granger causality
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
14/10/2013
14/10/2013
2012
|
Resumo |
Background: A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results: In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions: This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. The supercomputing resource was provided by Human Genome Center (Univ. of Tokyo). This work was supported by FAPESP and CNPq - Brazil and RIKEN - Japan. |
Identificador |
BMC Systems Biology, London, v.6, 2012 1752-0509 http://www.producao.usp.br/handle/BDPI/34898 10.1186/1752-0509-6-137 |
Idioma(s) |
eng |
Publicador |
BioMed Central London |
Relação |
BMC Systems Biology |
Direitos |
openAccess Fujita et al.; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Tipo |
article original article publishedVersion |