Mechanisms of ring chromosome formation, ring instability and clinical consequences


Autoria(s): Guilherme, Roberta S; Ayres Meloni, Vera F; Kim, Chong Ae; Pellegrino, Renata ; Takeno, Sylvia S; Spinner, Nancy B; Conlin, Laura K; Christofolini, Denise M; Kulikowski, Leslie D; Melaragno, Maria I
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

14/10/2013

14/10/2013

2011

Resumo

Background The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients. Methods Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization). Results The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV). Conclusions We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).

This work was supported by FAPESP, Brazil (grant to M.I.M. #07/58735-5). We are grateful to Dr. Decio Brunoni, Marco Antonio de Paula Ramos, Benjamin Heck, Silvia Bragagnolo and Luis Garcia Alonso for referring patients for this study

Identificador

BMC Medical Genetics, London, v.12, 2011

1471-2350

http://www.producao.usp.br/handle/BDPI/34667

10.1186/1471-2350-12-171

http://www.biomedcentral.com/1471-2350/12/171

Idioma(s)

eng

Publicador

BioMed Central

London

Relação

BMC Medical Genetics

Direitos

openAccess

Guilherme et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article

original article

publishedVersion