Sequence features responsible for intron retention in human
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
26/08/2013
26/08/2013
2007
|
Resumo |
Abstract Background One of the least common types of alternative splicing is the complete retention of an intron in a mature transcript. Intron retention (IR) is believed to be the result of intron, rather than exon, definition associated with failure of the recognition of weak splice sites flanking short introns. Although studies on individual retained introns have been published, few systematic surveys of large amounts of data have been conducted on the mechanisms that lead to IR. Results TTo understand how sequence features are associated with or control IR, and to produce a generalized model that could reveal previously unknown signals that regulate this type of alternative splicing, we partitioned intron retention events observed in human cDNAs into two groups based on the relative abundance of both isoforms and compared relevant features. We found that a higher frequency of IR in human is associated with individual introns that have weaker splice sites, genes with shorter intron lengths, higher expression levels and lower density of both a set of exon splicing silencers (ESSs) and the intronic splicing enhancer GGG. Both groups of retained introns presented events conserved in mouse, in which the retained introns were also short and presented weaker splice sites. Conclusion Although our results confirmed that weaker splice sites are associated with IR, they showed that this feature alone cannot explain a non-negligible fraction of events. Our analysis suggests that cis-regulatory elements are likely to play a crucial role in regulating IR and also reveals previously unknown features that seem to influence its occurrence. These results highlight the importance of considering the interplay among these features in the regulation of the relative frequency of IR. We thank Maria Vibranovski, Pedro AF Galante and Robson de Souza for discussions along the work and comments on the manuscript. We also thank PAFG for providing the cDNA mapping and clustering, the SAGE database and technical help and CB Burge for kindly providing the sequences of the FAS-hex3 ESSs. NJS was supported by a PhD fellowship from FAPESP. We thank Maria Vibranovski, Pedro AF Galante and Robson de Souza for discussions along the work and comments on the manuscript. We also thank PAFG for providing the cDNA mapping and clustering, the SAGE database and technical help and CB Burge for kindly providing the sequences of the FAShex3 ESSs. NJS was supported by a PhD fellowship from FAPESP. |
Identificador |
1471-2164 http://www.producao.usp.br/handle/BDPI/32792 10.1186/1471-2164-8-59 |
Idioma(s) |
eng |
Relação |
BMC Genomics |
Direitos |
openAccess Sakabe and de Souza; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Tipo |
article original article |